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We present evidence for the following conjecture: when quantized, the magnetic monopole soliton solutions con- 
structed by 't Hooft and Polyakov, as modified by Prasad, Sommerfield and Bogomolny, form a gauge triplet with 
the photon, corresponding to a Lagrangian similar to the original Georgi-Glashow one, but with magnetic replacing 
electric charge. 

Gains in symmetry are usually important in physics. 
Introducing magnetic monopoles gains an unusual kind 
of  symmetry: a "dual invariance" with respect to ro- 
tations through 7r/2 between the electric and magne- 
tic directions of  the Maxwell tensor, valid in vacuo, 
is preserved in the presence of  matter. Dirac showed 
[ 1 ] that in quantum theory the possible electric and 
magnetic charges q and g must satisfy* 1 

q g =  2rrhn, n = 0, -+1, -+2 ... . .  (1) 

This respects the dual symmetry 

q - + g ;  g - + - q  . (2) 

Such an inverse relation between the strengths of  
charges is possibly related to the existence of  strong 
and weak interactions in nature. There the relevant 
gauge groups H appear to be non-abelian in contrast 
to the abelian U(1) of  the Maxwell theory. Analysis 
of  the quantization condition analogous to condition 
(1) for a generalized non-abelian magnetic charge 
reveals that another group H v, explicitly constructed 
out of  H, plays a r61e [2]. It was suggested: 

(A) that H monopoles behave as irreducible multi- 
plets of  HV; 

(B) that the field theory o f H  monopoles should 
have an H v gauge symmetry. 

Since (HV) v = H, there should be two "dual equi- 
valent" field formulations of  the same theory in which 

1 Address after 1 October 1977: Department of Physics, 
Imperial College, London SW7, UK 

4:1 Contrary to common usage we are using rationalized units 
for both the electric and magnetic charges; i.e., the fields 
of point charges are £" = qr/41rr 3 and B = gr/4~rr 3. 

electric (Noether) and magnetic (topological) quantum 
numbers exchange r61es. 

In two space-time dimensions one explicit example 
of  the interchange of  Noether and topological charges 
is known [3]. The Thirring model provides the quan- 
tum field theory of  the solitons o f  the sine-Gordon 
model. 

To substantiate conjectures (A) and (B) for mono- 
poles, one should construct the analogous field theory 
for soliton monopoles, at least in the simplest case 
when H 

(a) has lowest rank, namely one, and 
(b) is self-dual: H = H v. 

The rank-one Lie groups are H = U(1), SO(3) or SU(2), 
but only U(1) is self-dual (by condition (1)). The 
simplest Lagrangian with U(1) (Dirac) monopoles 
occurring as solitons is the Georgi-Glashow model 
considered by 't  Hooft and Polyakov [4], in the spe- 
cial limit introduced by Prasad and Sommerfield [5]. 
We dare to suggest that the dual quantum field theory 
of  the monopole solitons is actually based upon ex- 
actly the same Lagrangian (with possibly some param- 
eters changed). In the original Lagrangian, the heavy 
gauge particles carry the U(1) electric charge, which 
is a Noether charge, while the monopole solitons carry 
magnetic charge which is a topological charge. In the 
equivalent "dual" field theory the fundamental mono- 
pole fields, we conjecture, play the r61e of  the heavy 
gauge particles, with the magnetic charge being now 
the Noether charge (and so related to the new SO(3) 
gauge coupling constant). Note that this situation, if 
true, differs from the sine-Gordon-Thirring model 
equivalence cited above in so far as the equivalent 
field theory has exactly the same form as the original 
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Fig. 1. Feynman graphs giving the long-range static potential 
between heavy gauge particles: a) photon exchange; b) Higgs 
meson exchange. 

one - this would be the quantum field theoretical 
form of the "dual invariance" under the interchange 
of electric and magnetic charge, eq. (2). 

We have unfortunately been unable to prove (or 
disprove) this conjecture, but we hope its potential 
interest justifies our explaining it in more detail and 
presenting some evidence in its favour: the classical 
properties of  the monopole in the model, namely 
the spectrum, the mass and the long-range force two 
monopoles exert on each other are precisely related 
to the corresponding properties of  the heavy gauge 
particle as our conjecture would predict. 

The Georgi-Glashow Lagrangian has a "big" 
gauge group SO(3) and a real Higgs field in the triplet 
representation 

1 [?lzvt.-2a .12 = - ' ~ a  "-'~v + ½Du~PaDU~°a - ¼ X(~Oa~°a - a2) 2 (3) 

Here 

b c G~v = buICa v -  ~vW~ + eoeabcW~W v , 

Do,ab = auS ab + eoeac b WS . 

In the ground state 

~patPa = a 2 , (4) 

and the fact that ~o must select a direction breaks the 
G = SO(3) symmetry down to H = U(1). The conven- 
tional particle content of  the quantum field theory 
corresponding to eq. (3) is read off after the gauge 

~oa(x ) = 6a3(a + o(x))  , (5) 

is chosen. Then, if 

W3=A u, F u v = b u A v - 3 v A u ,  V .  = 2-1/2(wlu+iW2), 

(6) 
£ ( e q .  (3)) reads, apart from a divergence term, 

--V J- 7V  © .... 

, , , / ' , ,  , ] 

l l / , . . . . .  

Fig. 2. Graphs not contributing to the static long range force. 

+ <--~- + 
+ 2 ieoFUVV/Vv+ ieoAU(V v O#VV+ VubvV+V- V~OpW) 

+z 2 + + 2 e2A2TT+.,~ ~eo(Vu V u -  V; V , )  - 0 r o y  
+ 2 T.+--/~ e o % A  VvAV+ ½ (Ouo)2 + egfa + 0) 2 V ; V  • 

+ ~,a2o 2 + Xaa 3 + ¼~.o 4 . (7) 

The elementary quanta, with their electric charge, 
mass and spin, are: 

the photon A~ (0, 0,/~), 
the Higgs particle a (0, (2x)l/2afi, O), 
the heavy gauge boson V~ (+-qo, M(qo), h ) ,  

where 

q0 = e0h , (8) 

(9) M(qo)  = alq0} = aleo lh .  

They correspond to classical particles in the limit 

h -+ 0; q0, a, (x)l/2h held f ixed.  (10) 

' t  Hooft  and Polyakov showed that there are, in addi- 
tion, soliton monopoles with magnetic charge 

g= +-go; go = 4~r/e0 = 4~rh/qo • (11) 

An important simplification occurs if we put  X = 0 but 
retain eq. (4) as a boundary condition to be satisfied 
at large distances [5]. The classical mass of  the mono- 
pole state becomes precisely [6] 

M(g)  = a Igl = (41rh/q2)M (qo) . (12) 

Note that the monopoles emerge as particles in a diffe- 
rent classical limit, namely the usual loop expansion 
limit 

h ~ O ;  eo, a held f ixed.  (13) 

Let us discuss the values of  magnetic charge g al- 
lowed to elementary soliton solutions in general. It 
seems reasonable to require that all such solutions 
should be spherically symmetric in the sense of being 
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covariant with respect to an angular momentum opera- 
t o r Y = r  ^ p  + ht ,  where t i are three fixed generators of  
the "big" group G satisfying [ti, tj] = iei] k t k. Certainly 
all known soliton solutions satisfy this requirement, 
and we advance a reason below. If the little group 
H =  U(1) ,g  must satisfy [7] i 'Y= i ' t h  = -gQ/4n, 
where Q is the electric charge operator (a matrix whose 
eigenvalues are the electric charges of the elementary 
fields), i 

For the theory under consideration, t:- t necessarily 
has eigenvalues 0, +1 and Q eigenvalues 0, -+q0" Hence 
equating the smallest non-zero eigenvalues, 

gqo = -+47rh. (14) 

So the possible values for the magnetic charge of  
"elementary" states are only 0, -+go (this is sometimes 
known as the Guth-Weinberg theory [81). The point 
we want to make about this is that this is precisely 
the same as the spectrum of  values for the electric 
charge, assumed by the elementary fields in eq. (7), 
namely 0, -+qo" This is the first point of  similarity 
between the soliton and elementary particle spectra. 

The second point concerns the mass: our conjec- 
ture implies that we should be able to calculate the 
mass of  the heavy gauge (V -+) particles regarding them 
as solitons of  the field theory with the monopoles in 
the r61e of the gauge particles. Assuming X = 0 and 
using eq. (12), we find, replacing q0 by go, M(qo) = 
(4 lrt~/g 2) M(go). For consistency this should agree 
with eq. (9), which indeed it does. As a bonus we 
learn that the constant a is the same for both formu- 
lations of  the theory since a = M(go)/Igo[ = M(qo)/lqol. 
The two Lagrangians differ only in their coupling con- 
stants, e 0 = (qo/h) and go/h, respectively. 

A third classical attribute of the monopole would 
be the intermonopole force. In an extremely ingenious 
calculation Manton [9] obtained the force from the 
instantaneous acceleration of two well-separated mo- 
nopoles at rest and found an attraction 2g2/4nr 2 if 
the monopoles were oppositely charged but zero force 
if they were of like charge (at least to O(1/r2)). The 
striking feature is that this is not the expected answer 
+-g2/4nr2. According to our conjecture the V ± particles 
should exert similar forces with qo replacing go" This 
can be checked, since the Born approximation for 
two particles moving slowly with respect to each other 
determines their static potential energy. The single 
photon exchange graph (fig. la) yields +-4q~)M2/k 2, 

indicating an attraction or repulsion +q2/4nr2 ac- 
cording to whether the charges are unlike or like. 
Since the Higgs particle has zero mass, its exchange 
gives a competing graph. The Yukawa coupling is read 
off  from the term 

e 2 (a + 0) 2 V~ V u = h -2(M(q0) + I q0 Io) 2 V;  V • , 

in the Lagrangian (7). Even spin exchange being always 
attractive, the Higgs exchange graph (fig. lb )  gives 
4 q ~ 2  /k 2, or an additional attraction q2/47rr2, can- 
celling the repulsion between equally charged particles 
and doubling the attraction between oppositely charged 
ones. Thus two quite different calculations agree and 
support our conjecture. (The loop graphs in fig. 2 do 
not compete since they are O(fi) compared to the ones 
in fig. 1 when the wave number - not the m o m e n t u m -  
is held fixed, as it should be in calculating the potential.) 

Thus  not only does the monopole have a mass cha- 
racteristic of  a Higgs mechanism, it also possesses the 
characteristic Yukawa coupling. 

So the classical properties of  the monopole support 
our conjecture. So should the quantum properties but 
we do not know how to calculate them. Let us review 
the situation. 

If  the monopole is going to be a gauge boson, it 
should have a spin lb .  The presence o f h  emphasizes 
that it is a "zero point energy" quantum mechanical 
effect which is difficult to calculate by present 
methods and in particular not accessible to naive semi- 
classical methods. Investigations up to now [10, 1 i] 
have concluded that the monopole is spinless, primarily 
because of the spherical symmetry of  the classical solu- 
tion. It seems to us, however, that the methods used 
cannot lead to conclusive result since they do not 
take into account operator ordering problems or, in 
the language of  functional integration, the problems 
connected with non-linear canonical transformations 
of integration variables (for a discussion of  this ever- 
green problem in a soliton context,  see [ 12]). It is 
important to note that if the monopole has any fixed 
integer spin it must be spherically symmetric classically, 
since if not,  there would be a tower of  states with inte- 
grally spaced spins instead of  just one value nh. Thus 
the classical spherical symmetry requirement is indeed 
an "elementari ty" requirement as supposed earlier. 

Since the heavy gauge particle has a magnetic mo- 
ment (as read off  eq. (7)), (qo/M(qo))JSpin = a - l J sp in  , 
we predict that the monopole possesses a quantum 
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mechanical electric dipole moment a-lYspin = 
(g/M(g))Jspin. Classically, the electric dipole moment 
is, of  course, zero. (Note the gyromagnetic ratio is the 
same as for the Dirac electron.) 

What about quantum corrections to the classical 
properties discussed earlier? Again we do not know 
but it is conceivable that the special properties dis- 
cussed will survive because they are related to a sym- 
metry. Thus we expect that, e.g., the mass formula 
(12) will remain valid when quantum corrections are 
taken into account, the parameters being interpreted 
as renormalized ones. When developing methods for a 
proper quantum treatment of  monopoles, starting 
from the "electric" formulation of the theory, it is 
of  paramount importance to take into account the 
existence of  the monopoles from the start in order not 
to break the dual symmetry. Therefore we view with 
suspicion treatments based on the gauge (5), which 
cannot be chosen everywhere when monopoles are 
present. 

Mention must be made of  the dyon solutions [ 13]. 
As predicted by eq. (14) they have the two possible 
values of  g, but, classically, any value of  the electric 
charge between plus and minus infinity. Semi-classical 
quantization arguments indicate [14] that the charge 
is quantized in units of q0 rather than qo/2 which 
would be allowed by eq. (1), but would disagree with 
our conjecture, since states with magnetic charge 
+-go/2 would be predicted contradicting eq. (14). The 
dyon states (-+q0, -+go) are self-dual, but the state 
with [ql ~> 2q 0 disagree with our conjecture, since 
they would imply the existence of  states with multiple 
magnetic charge. We suspect that the state with [q[ 
~> 2q0 will not  survive a full quantum mechanical 
treatment. 

Finally let us discuss the dyon mass formula [6] 

M(q, g) = a(q2 + g2)1/2. (15) 

This formula has three remarkable features: 
(1) it is universal in that it applies to all single par- 

ticle states: dyons, monopoles, the photon, the Higgs 
boson and the heavy gauge particle; 

(2) it guarantees the stability of the elementary 
states; since q and g are separately conserved we have 
by the triangle inequality 

M(ql +q2 ,g l  +g2) <~M(ql , g l )  +M(q2,g2); 
(3) it exhibits a continuous symmetry under rota- 

tions in the (q, g) plane spontaneously broken by the 
allowed q, g values occurring in the model,maybe the 
Higgs particle (which has to be massless for eq. (15) 
to be valid) is the Goldstone boson for this peculiar 
sort of  spontaneous symmetry breaking. 

We have dared to present our speculations, as yet 
unproved, because we feel they do succeed in relating 
previously uncorrelated facts and would be, if true, 
of some importance for the further unveiling of the 
secrets of  quantum gauge field theories. 

We wish to thank H. Osborn and P. Di Vecchia for 
enlightening discussions. 
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